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Designing Together: Exploring
Collaborative Dynamics of
Multi-Objective Design Problems
in Virtual Environments
The pace of technological advancements has been rapidly increasing in recent years, with
the advent of artificial intelligence, virtual/augmented reality, and other emerging technol-
ogies fundamentally changing the way human beings work. The adoption and integration of
these advanced technologies necessitate teams with diverse disciplinary expertise, to help
teams remain agile in an ever-evolving technological landscape. Significant disciplinary
diversity amongst teams, however, can be detrimental to team communication and perfor-
mance. Additionally, accelerated by the COVID-19 pandemic, the adoption and use of tech-
nologies that enable design teams to collaborate across significant geographical distances
have become the norm in today’s work environments, further complicating communication
and performance issues. Little is known about the way in which technology-mediated com-
munication affects the collaborative processes of design. As a first step toward filling this
gap, the current work explores the fundamental ways experts from distinct disciplinary
backgrounds collaborate in virtual design environments. Specifically, we explore the con-
versational dynamics between experts from two complementary yet distinct fields: non-
destructive evaluation (NDE) and design for additive manufacturing (DFAM). Using
Markov modeling, the study identified distinct communicative patterns that emerged
during collaborative design efforts. Our findings suggest that traditional assumptions
regarding communication patterns and design dynamics may not be applicable to expert
design teams working in virtual environments. [DOI: 10.1115/1.4063658]

Keywords: collaborative design, computer-aided design, decision theory, design
methodology, design representation

1 Introduction
As design and manufacturing technologies continue to advance

and evolve at break-neck speeds [1,2]; these technologies are funda-
mentally changing the ways design teams design [3–5], and neces-
sitate interdisciplinary teams [6] capable of adapting to an
ever-evolving technology landscape. Design teams with team
members from distinct disciplines, or high levels of disciplinary

diversity, benefit from more diverse perspectives and approaches
to problem-solving [7,8], resulting in a larger solution space [9],
more innovative outcomes [9–12], and reduced risk [13–15].
Prior work has demonstrated the utility of concurrent engineering
practices to leverage cross-functional teams to produce more inno-
vative final products [9,16].
However, team science also points to diversity as a “double-

edged sword” [17], with differences between team members
acting as a barrier to effective teamwork [18]. Specifically, disci-
plinary diversity can introduce significant barriers to team commu-
nication, as team members must negotiate disciplinary boundaries
by building a fundamental understanding of technical jargon and
disciplinary norms [19]. Further, experts’ perceptions of collabora-
tions can threaten the collaboration itself. For example, a perceived
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loss of autonomy in decision-making and perceptions that disciplin-
ary knowledge is not valued [20] can lead to the disintegration of
the collaboration itself [21].
While we know design is a team sport, most studies have focused

on individual expert strategies [12,22–24] to derive heuristics for
effective problem-solving. This work aims to understand funda-
mentally how experts from disparate fields collaborate on a
multi-objective design problem, to build foundational knowledge
regarding the efficacy of these collaborations. We specifically
study the interactions between additive manufacturing (AM)
experts and non-destructive evaluation (NDE) methods as a repre-
sentative case study in multi-objective design.
Advancements in AM have resulted in increased speed of produc-

tion of additively manufactured parts and also made it possible to
create intricate and complicated structures [25–28]. However, post-
processing and inspection of AM parts can significantly increase
the manufacturing process’s overall costs and time to market [29].
While advantageous, the increased geometric complexity offered
byAM, can also present new challenges for industries where compo-
nent qualification and inspection are necessary before use [30–32].
Although AM technologies are reaching high technological readi-
ness levels (TRL) ranging from 6 to 9 [33–35] (nine being the
most mature technology), the NDE techniques needed to inspect
complex parts manufactured with these technologies remain at
lower maturity, ranging from TRL 3 to 6 [36,37]. While AM and
NDEoperate in intertwined domains, they remain professionally dis-
tinct, a perspective supported by the recruitment process from spe-
cialized channels like ASME, ASA, NIST, and NASA. NDE’s
focus largely resides in on-process and post-process AM inspection
[38], whereas literature reveals a limited overlap with early-stage
design for additive manufacturing (DFAM) considerations by
NDE researchers [39]. This inherent distinction, corroborated by
industry insights, emphasizes the pressing need to bridge these com-
plementary areas for comprehensive manufacturing advancements.
Therefore, we argue that investigating interdisciplinary collabora-
tions between AM and NDE experts is not only timely but can
yield valuable insights for integrating NDE considerations into
AM design.
The COVID-19 pandemic has accelerated the adoption of virtual

collaboration tools, which offer numerous benefits but also pose
challenges, such as the absence of social cues [40,41].While research
by Maznevski and Chudoba has highlighted that this can result in a
lack of trust and cohesion [42], virtual collaborative computer-
aided design (CAD) software, notably cloud-CAD platform
ONSHAPE, has demonstrated effectiveness in enabling distributed
teams to collaborate on intricate design projects [43]. This study pro-
vides a comprehensive understanding of how experts collaborate
using collaborative CAD software in a virtual environment. Using
our Markov model, we found that experts exchange knowledge
before transitioning to an action-oriented phase, where they
remain. Unlike traditional applications of C–K theory, we observed
that experts tend to stay in one phase before transitioning to the other,
rather than alternating rapidly when solving a design problem.While
prior team science literature suggests that communication patterns
can predict problem-solving behavior, our findings show few link-
ages between communicative patterns and design dynamics, possi-
bly due to a lack of research in virtual settings or CAD
environments. Importantly, this work contributes novel insights
into our understanding of how designers collaborate in virtual envi-
ronments with an initial focus on dyads to elucidate foundational
communication dynamics before advancing to larger, interdisciplin-
ary teams; this is particularly critical given thewide-scale adoption of
virtual technologies and the shift toward hybrid work environments.

2 Background
2.1 Interdisciplinary Collaboration in Design. Designing a

solution to a complex interdisciplinary problem is dependent
upon collaboration quality between team members. Disciplinary

experts must work together to find solutions that balance competing
objectives, requiring team members to engage in frequent commu-
nication to understand the tradeoffs of design choices. Prior work
from team science points to linkages between team conversational
dynamics and team performance [44–47]. For example, Nemeth
and Staw [48] found that groups with a dominant member generated
fewer and less varied ideas, leading to a reduced ability to generate
diverse solutions. Similarly, Paulus and Dzindolet [49] examined
social influence and team productivity and found that dominant
individuals in conversations can significantly influence the
group’s ideas, and if their impact is negative, it may inhibit the
group’s creative potential.
Generally, a team’s performance can be negatively affected by

misinterpretation between team members due to differences in dis-
ciplinary discourse, norms, or jargon [21]. In a study examining the
collaboration between engineers and biologists, Hashemi Farzaneh
[50] underscored the importance of communication and mutual
understanding between the two fields. Findings from this study indi-
cate that such collaboration can improve analogical transfer, which
refers to the process of applying knowledge from one domain (in
this case biology) to a different domain (engineering), and result
in more innovative design solutions. Sieffert et al. [51] highlighted
the success of a workshop-style curriculum that aimed to bridge the
gap between architects and civil engineers by fostering collabora-
tion focused on sustainable construction using repurposed materi-
als. Through this approach and training workshop, the architects
and engineers were compelled to think critically to incorporate
each other’s disciplines, leading to a more holistic and innovative
approach to building design. Kuusinen [52] investigated the collab-
oration and communication between user-experience specialists and
developers in agile software development projects, identifying the
critical role of effective task allocation, which highlights the need
for clear communication and mutual understanding between team
members. For large complex engineering systems, establishing col-
laboration strategies is critical to the management of the project
itself. For instance, a NASA case study showed that coordination
strategies, such as division of labor, coordination mechanisms
(e.g., regular meetings and shared workspaces), and a shared under-
standing of project goals and requirements among team members,
were effective in managing interdependent tasks, aligning stake-
holders’ goals, and addressing communication challenges [53].
Collaboration through virtual tools has become increasingly

popular, particularly due to the COVID-19 pandemic [40,41].
Despite the prevalence of geographically distributed teams, strate-
gies for effective team functioning in virtual environments are not
well understood [54]. Technology-mediated communication across
video conferencing platforms can make the interpretation of nonver-
bal and paraverbal cues (e.g., voice pitch, pauses, or inflection) dif-
ficult for remote workers; in in-person settings, these cues
facilitated turn-taking (TT), conversation flow, and “mind reading”
in group interactions [55–57]. Collaborative design tools may help
teams overcome the challenges of virtual collaboration. Emergent
work has demonstrated that collaborative CAD software tools such
as ONSHAPE effectively enable distributed teams to work together on
complex design projects [43]. For instance, Zhou et al. [58] examined
the emotional experiences of designers in both traditional and collab-
orative CAD environments such as ONSHAPE. Their findings suggest
that virtual collaborative tools can have a positive impact on commu-
nication and collaboration. Further, Phadnis et al. [59] compared the
working styles of individuals versus pairs within a cloud-CAD plat-
form and found that, while individuals were faster than pairs, pair
work with a single shared input led to higher-quality final models.
The use of virtual collaborative tools, such as collaborative CAD
systems, can help design teams promote effective virtual interdisci-
plinary collaborations.

2.2 Design Problem-Solving Strategies Employed by
Experts. As the need for interdisciplinary teams grows, it is critical
to understand disciplinary expertise and the fundamental ways
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experts solve problems collaboratively. Within design theory and
methods, researchers have studied the problem-solving strategies
of experts for some time, deriving heuristics, tools, and methods
from patterns of expert behavior. However, much of this work has
investigated experts working alone. For example, prior work by
Damen and Toh [60] explored the information representation and
structuring techniques used by expert designers during the design
process. The study found that experts employ their experience and
various knowledge transfer tools, such as sketching, diagrams,
mindmaps, and lists, for problem-solving and transforming resulting
information into insights that facilitate effective communicationwith
stakeholders [60]. Similarly, Ericsson and Lehmann [61] explored
how experts and exceptional performers adapt to task constraints
for optimal performance in the fields of music and chess. In this
work, they identified cross-cutting adaptive strategies used by
experts, such as chunking (breaking down large amounts of informa-
tion into smaller,moremanageable units or “chunks”), pattern recog-
nition, and deliberate practice, to optimize their performance under
different task constraints.
A significant body of work has explored the differences and sim-

ilarities between experts and novices, oftenwith the intent to develop
tools to support novice problem-solving. For example, Ahmed et al.
[62] conducted a study of novices and experienced designers and
found that novices follow a trial-and-error approach, while experts
evaluated their initial decisions and employed an integrated design
strategy. Additionally, Ho [23] conducted a protocol analysis to
investigate the problem-solving strategies used by novices and
experts in design thinking. The study revealed that experts utilize a
more systematic approach to problem decomposition, employing
mental simulation, analogical reasoning, and abstraction techniques,
while novices did not show such a structured approach. Further,
Gosnell and Miller [63] found that compared to novices, experts
rated concepts more strictly and gave less favorable ratings overall.
In the context of the current work, we view expert behavior

through the lens of C–K theory. C–K theory introduced by Hatchuel
and Weil [64] suggests that designers rapidly alternate between the
concept space (C-space) and knowledge space (K-space) during
design problem-solving. In this dynamic process, designers
explore novel ideas in the C-space and draw on their existing
knowledge in the K-space to refine and implement these concepts.
For instance, Hatchuel et al. [65] demonstrated the effectiveness of
C–K theory in the case of the Mg-CO2 engine design for Mars mis-
sions, showcasing how the approach facilitates the development of
innovative solutions by seamlessly integrating creativity and estab-
lished domain knowledge.
Problematically, these studies often investigate designer behavior

in isolation. Relatively little work has explored the interactions and
strategies exchanged between experts during collaborative events.
Within the team science literature, researchers have explored the
factors that contribute to or detract from effective collaborations
for teams of interdisciplinary experts [45–49,61]. Studies of evolving
models of multidisciplinary collaboration emphasize the importance
of communication, collaboration, and mutual understanding in pro-
moting creativity and innovation [10]. Together, these studies
suggest that effective collaboration among dyads/teams in multi-
objective design problem-solving is essential for promoting creativ-
ity, enhancing learning outcomes, and developing useful solutions.

2.3 Synthesis of Prior Work and Context of the Current
Study. While prior work has explored the problem-solving strate-
gies of experts working independently, little work has identified the
fundamental ways experts collaborate, particularly in the context of
virtual work environments. The shift to virtual and hybrid modes
due to the COVID-19 pandemic has made virtual teams and
digital platforms the new norm for collaboration, highlighting the
need to understand how these elements contribute to effective
team collaboration.
Effective communication and knowledge exchange are crucial to

forming a shared understanding among interdisciplinary team

members. Misinterpretation between team members due to differ-
ences in disciplinary discourse, norms, or jargon can negatively
affect the team’s overall performance. Studies have shown that col-
laboration and mutual understanding between different fields can
improve analogical transfer [50], which is the process of applying
knowledge from one domain to another, and results in more innova-
tive design solutions. In addition, effective task allocation, clear
communication, and mutual understanding are essential for collab-
oration and communication between teammembers, as identified by
studies investigating collaboration and communication in different
contexts [51–53,66]. Moreover, as geographically distributed
teams become increasingly prevalent due to the COVID-19 pan-
demic, strategies for effective team functioning in virtual environ-
ments are critical. However, technology-mediated communication
across video conferencing platforms can make the interpretation
of nonverbal and paraverbal cues difficult, which are essential for
effective communication and collaboration. Collaborative design
tools, such as cloud-CAD platform ONSHAPE, can help teams over-
come the challenges of virtual collaboration. In summary, collabo-
ration and communication are critical for interdisciplinary teams to
form a shared understanding of the design space, and the exchange
of knowledge and effective communication is necessary for suc-
cessful collaboration.
In the current work, we specifically focus on the collaboration

between experts from two complementary yet distinct fields: AM
and NDE. We highlight this as a prime case study to explore
expert collaboration, as ensuring consistent quality in AM parts is
a pervasive challenge [37,67]. Prior literature indicates NDE
research primarily delves into in-process and post-process inspec-
tions within AM [68,69], and scant literature points to NDE
researchers engaging with early-stage DFAM [39]. Although
NDE professionals are familiar with AM, their expertise in
DFAM principles is often limited, making these fields complemen-
tary yet distinct [70]. Similarly, while DFAM experts are starting to
consider NDE, there has been limited research in early design pro-
cesses focused on inspectability. Hence, while there’s a perception
of overlap between AM and NDE due to their intertwined opera-
tions in manufacturing settings, a deeper dive reveals marked dis-
tinctions in their professional realms. Consequently, we argue that
there is an emergent and pressing need to bridge these complemen-
tary areas for manufacturing advancements. Motivated by this, we
aim to explore the communication and design patterns that
emerge as dyads, consisting of one expert in AM and one expert
in NDE, working in a collaborative CAD environment.

3 Research Objectives

RQ1: How do experts collaborate on a multi-objective design problem
in a collaborative CAD environment?

The first research question sought to identify the underlying col-
laborative process employed by dyads navigating a design chal-
lenge in a collaborative CAD environment. Specifically, we
sought to understand the linkages between the way experts
exchange knowledge and make design decisions by using a
Markov model to derive higher-level collaborative processes from
dyadic interactions.

RQ2: What is the relationship between the conversational dynamics of
dyads and the design dynamics produced during the dyadic
interaction?

The second research question of this study sought to understand
the linkages between conversational dynamics and design dynam-
ics. Specifically, we explore the relationship between turn-taking,
conversational dominance (CD), and silence; CAD efficiency
(CE), CAD dominance, and CAD complexity. Prior work has dem-
onstrated that the conversational dynamics of a working group, e.g.,
conversation dominance, is negatively correlated with the creative
output of the team (e.g., fewer and less varied ideas [48,49]).
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However, little work has explored what links exist between conver-
sational dynamics and design dynamics in more complex design
tasks, such as CAD modeling, during virtual collaborations.

4 Methods
4.1 Participants. A total of 30 experts and quasi-experts were

recruited; 15 participants held expertise in NDE techniques and 15 par-
ticipants held expertise in DFAM. Demographic information, includ-
ing participants’ experience with CAD, AM, and NDE techniques,
was gathered through a comprehensive pre-study survey. This
enabled us to effectively categorize the participants into two distinct
groups: experts and quasi-experts. Quasi-experts were defined as
senior Ph.D. students with at least 4+ years of practical experience
in either AM or NDE. Experts were defined as industry professionals
or faculty members with a minimum of 8+ years of experience in
either AM or NDE; these definitions are in alignment with prior
work in design studies [71,72]. Overcoming the inherent challenges
associated with recruiting participants from specialized areas such as
AM and NDE, we successfully employed purposeful and snowball
sampling methods. Specifically, we relied on recommendations from
professors to identify suitable Ph.D. students who met the criteria
for being considered quasi-experts, a practice supported by existing lit-
erature [73]. Hence we categorized participants as quasi-experts if they
have significantly more experience in an area as compared to novices
but are not yet recognized as experts, e.g., senior-level Ph.D. candi-
dates [73]. We categorize participants as experts if they possess signif-
icant knowledge, skills, or expertise in a specific field of study, which
can be attributed to their research, professional experience, or occupa-
tion, e.g., Professors and Industry Professionals [22]. In total, 20
quasi-experts and 10 experts were recruited. Table 1 breaks down
the participants’ demographic data and expertise information.
Recruitment was done in accordancewith the Institutional Review

Board practices. The participantswere recruited independently; none
of the dyads had collaborated before the experiment. Each participant
would receive a compensation of $25 Amazon gift card for partici-
pating in the study. We employed purposeful sampling to recruit
individuals that are notably knowledgeable about a subject [74,75]
and snowball sampling, in which current participants identify or rec-
ommend additional participants for recruitment [76,77]. These
methods were used to specifically recruit individuals with areas of
expertise in DFAM or NDE; where AM experts demonstrated
knowledge of various DFAM principles [78], including designing
for support structures, lightweight parts using lattice structures,
and optimizing design orientation; and, the NDE experts exhibited
expertise in or experience using NDE techniques [37,38], such as
pulse echo ultrasonic inspection, X-ray diffraction analysis, or com-
puted tomography (CT).

4.2 Data Collection. To conduct our laboratory-based mixed-
methods study, collaborative CAD software, ONSHAPE, was used

because not only is it synchronously collaborative [79], but it gen-
erates an audit trail of every CAD action taken by the users in the
software platform, allowing the research team to explore patterns
in CAD construction data. Audit trails capture every event that
occurs within a specific document or for a specific user within a
specified time [79,80]. For the purposes of our study, we will con-
sider these audit trails as data logs that document actions taken
within each dyadic CAD session. Essentially, audit trails record
the event time, document name, ONSHAPE tab (e.g., part studio or
assembly), username, and a brief description of the event, as illus-
trated in Fig. 1. The event time is recorded in universal time, with a
resolution of 1 s, which is sufficient for our study. The event time
recorded in audit trails serves as a reference point for corresponding
sections in our video footage. These backend audit trail data were
downloaded for each dyadic team separately in CSV format.
The study was divided into four sections: (1) pre-study steps and

pre-study survey, (2) ONSHAPE training exercise, (3) design chal-
lenge, and (4) post-study survey. Figure 2 shows the timeline of
the study.
As the aim of this study is to understand how experts collaborate

on a multi-objective design problem, participants were paired
within groups (experts and quasi-experts) according to their area
of expertise (i.e., DFAM or NDE). Specifically, participants with
expertise in NDE were paired with participants with expertise in
DFAM, and participants with quasi-expertise in NDE were paired
with participants with quasi-expertise in DFAM. Prior literature
has documented the power dynamics between graduate students
and professors, with various studies emphasizing the notable dispar-
ities in authority and influence between these two groups [81–83].
To mitigate potential confounding factors due to perceived power
differentials, the research team deliberately paired quasi-experts
with other quasi-experts. This pairing not only avoided conflation
of results but also enabled the team to effectively control for the var-
iable of power differentials in their study.
Following the pairing process, participants were provided with a

pre-study survey and instructions to setup an ONSHAPE account; par-
ticipants were instructed to setup their individual profiles to ensure
effective backend audit data trail generation. The pre-study survey
gathered demographic information, and experience levels. Partici-
pants were required to complete the survey before participating in
the study.
Once the survey was completed, the research team selected a

mutually available date and time for the virtual study to take
place. As experts were geographically dispersed, the research
team used the Zoom video conferencing tool [84] to facilitate the
collaboration. At the start of the study itself, participants were
informed that the entire session would be recorded, including all
verbal communication and participants’ laptop screens (via screen
share tool).
The study began with a 20-minute individual training exercise in

which participants were given a two-dimensional drawing and
instructed to create a three-dimensional CAD model using

Table 1 Participants’ demographic data and expertise information

Participants with DFAM expertise Participants with NDE expertise

Gender Ethnicity Profession Count Gender Ethnicity Profession Count

Woman White Senior Ph.D. student 3 Woman White Senior Ph.D. student 3
Woman Black Senior Ph.D. student 1 Woman Asian Senior Ph.D. student 2
Man White Senior Ph.D. student 3 Man White Senior Ph.D. student 3
Man Asian Senior Ph.D. student 3 Man Asian Senior Ph.D. student 1

Man Prefer not to answer Senior Ph.D. student 1
Woman White Professor 1 Woman White Professor 2
Man White Professor 1 Man White Professor 1
Man Asian Professor 1
Woman White Industry 1 Man White Industry 1
Man White Industry 1 Man White Industry 1

Total DFAM participants= 15 Total NDE participants= 15
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ONSHAPE, as shown in Fig. 3 [85]. Once the model was complete,
participants were instructed to assign a material (here titanium) to
the part and then view the mass properties of the part. This exercise
was designed to help participants become familiar with the ONSHAPE

CAD environment and ensure participants were able to complete
the fundamental CAD actions needed for the primary design
challenge.
Following the training exercise, participants were briefed on the

design challenge and were introduced to their partners. Participants
were instructed to work collaboratively in CAD using the ONSHAPE

platform. For the design challenge, the GE titanium bracket para-
metric model [86] was shared within ONSHAPE and the following
design prompt was provided to participants:

“For the second task, a CADmodel will be provided, and the challenge
is a reduction of the part’s mass by 50% while adhering to the princi-
ples of DFAM and NDE. It is imperative that the location of the four
bolt holes remain unchanged, and the four loading conditions and
bracket location are to be considered for the visualization of the
part. To summarize, the primary objectives of this design prompt
are: (1) achieving a 50% mass reduction, (2) ensuring that the final
part meets DFAM and NDE requirements, and (3) retaining the size
and location of countersinks and bolt holes.”

In addition to this written prompt, a member of the research team
remained in the Zoom room for the entirety of the experiment; using
a verbal script the researcher encouraged dyads to work together to
produce a design that met the stated design objectives (mass reduc-
tion) while remaining mindful to the opportunities and constraints
inherent to both AM and NDE technologies.
Participants were also provided with four different loading con-

ditions [86] the part would undergo, along with multiple images
[87] highlighting the use of the component (see Fig. 4).
The design prompt was adapted from the GE Jet engine bracket

challenge [86] to include explicit criteria related to the viability of
the component to be inspected using traditional NDE techniques.
This design challenge has been used in prior experiments to identify
heuristics designers may use to increase the inspectability of
designed components [39]. The participants were given 75 min to

produce a design; dyads were allowed to end the study early if
both team members were satisfied with the design. After the
study, the researchers collected and stored the CAD models and
the audit trail.

4.3 Metrics. Audio, video, and CAD data collected through
the study were transformed into several key metrics to inform our
understanding of the collaborative dynamics between experts.
These metrics were calculated based on prior research [88–96]
and are defined in the following sections.

4.3.1 Qualitative Coding of Video and Audio Data. To build a
fundamental understanding of the way experts collaborate, we
developed a simple coding schema to capture participant actions.
The first author immersed themselves in the audio and video data,
employing an open and axial coding approach [97] paired with
constant comparative methods to generate a coding schema of
expert actions. The first and second authors then reviewed the
coding schema and refined the categories identified using constant
comparative methods [98,99] with prior work [88]. Specifically,
we draw from Hatchuel andWeil’s C–K theory [64], which concep-
tualizes design as the interaction between two distinct spaces, the
concept space and the knowledge space. The knowledge space
refers to all known or true propositions, which conceptualizes
design as the interaction between two distinct spaces, the C-space
and the K-space. The K-space refers to all known or true proposi-
tions, while the C-space refers to concepts that are unknown or
undecidable propositions in the K-space. C–K theory models the
design process as the dynamic transformation of objects in the
C-space into known entities in the K-space via emergent design
information that becomes known through design actions. Based
on this theory, the researchers formulated the coding schema
shown in Table 2.
After finalizing the codebook, two researchers used the codebook

to code randomly selected dyadic interactions of audio and video
data using SOLOMON CODER, a behavioral coding software [100].
SOLOMON CODER chunks video data into 0.2 s segments and codes

Fig. 1 Audit trails as data logs

Fig. 2 Study timeline
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were assigned based on the audio and video data for each temporal
interval. Initial inter-rater reliability [101] was calculated and found
to be insufficient with Cohen’s κ= 0.64. Subsequently, the research-
ers discussed disagreements and reviewed the codebook and defini-
tions together. An additional set of dyadic interactions were
randomly selected and both raters coded the video and audio
data. Inter-rater reliability was once again calculated and found to
be sufficient, with Cohen’s κ= 0.81, indicating acceptable agree-
ment between raters. The researchers then proceeded to code the
remainder of the video and audio data independently.

The outcome of this coding process, a vector of time-stamped
coded actions per dyad was then used as input into a Markov
model. A Markov model is a mathematical model that is employed
to describe a stochastic process consisting of a finite number of
states in which the system transitions between each state [102]. It
is widely used in diverse fields such as demand predictions,
decision-making analyses, chemical processes, and design research
[103–105]. Markov modeling has been extensively applied to study
the cognitive states of designers involved in problem-solving, to
identify design heuristics, and to investigate team dynamics

Fig. 3 ONSHAPE training exercise

Fig. 4 Design challenge visualization aid [86,87]: (a) jet engine, (b) iso view, (c) side view, and (d) top view
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during concept generation [106–108]. By employing a Markov
model, we can visually analyze observed interactions and interpret
the dynamic nature of communication, leading to a comprehensive
understanding of how participants collaborate and adapt during the
design challenge.
In this study, the coding of dyadic interactions resulted in a vector

of codes for dyad; this vector was used as input into the Markov
model for analysis, conducted in R studio version 4.2.3 [109] to
examine the frequency and sequence of these actions, generating
a transition matrix, following prior research on design actions
using Markov models [110,111]. To enhance visibility, each
Markov Chain, depicting the emergent pattern, was manually
created, emphasizing transition probabilities higher than 0.15 and
excluding lower probabilities due to their infrequent occurrence.
In summary, combining this qualitative coding schema with
Markov modeling enabled the research team to identify larger pat-
terns of collaborations across all dyads.
In pursuit of exploring collaborative dynamics, we narrowed it

down to conversational dynamics and design dynamics. The fol-
lowing information delves deeper into each of the metrics that con-
tribute to these dynamics.

4.3.2 Conversational Dominance. Conversation dominance is
a measure of the asymmetry of conversational dynamics in collab-
orative tasks and has been linked with both objective and effectual
meeting outcomes [89]. In a dyadic collaboration, if both speakers
contributed equally to the conversation and spoke for 50% of the
time, the resulting dominance value would be zero, indicating no
discernible dominance. Conversely, if speaker A spoke for 60%
of the time and speaker B spoke for 40%, the dominance value
would be 20%, indicating that speaker A is dominant by 20%.
CD was calculated as shown in Eq. (1), where CD is equal to the
absolute value of the difference between the time spent speaking
by the first speaker (ST1) and the time spent speaking by the
second speaker (ST2), divided by the total duration of the conversa-
tion (STtotal).

CD =
|ST1 − ST2|

STtotal
(1)

4.3.3 Turn-Taking. Turn-taking in a conversation refers to the
frequency of speaker changes, and has been found to foster equal
participation opportunities among team members, encourage infor-
mation sharing, increase engagement, stimulate creativity, and ulti-
mately enhance overall team performance [90]. Turn-taking was

calculated first by identifying unique speakers and speaking seg-
ments separated by at least 500 ms of silence. Silence duration of
500 ms is commonly used to define a turn boundary in conversa-
tional analysis research [89,112–114]. TT was then calculated by
counting the number of speaker changes between speaking seg-
ments (Tn); this total was then divided by the total length of the
study (Ttotal), as outlined in Eq. (2)

TT =
Tn
Ttotal

(2)

4.3.4 Silence. Additionally, the ratio of silence over the total
duration of the study was calculated. Prior work has demonstrated
that sustained silence in collaborative problem-solving groups
allows group members to process and integrate their individual
ideas and perspectives, leading to a more efficient and effective
group brainstorming session [91,92]. As outlined in Eq. (3),
silence (S) was calculated by dividing the total time a single dyad
was silent (Ts) by the total time of the study (Ttotal). Here the thresh-
old for silence was determined to be any length of time greater than

Table 2 Codebook

Definition Code Example quote
Letter
code

Knowledge share—sharing general information,
principles, or knowledge from the individual’s area of
expertise.

DFAM knowledge
share

“For it to print additively, it needs to have overhangs no
more than 45 deg angles.”

A

NDE knowledge share “If we go through the Ultrasound route then we need to make
sure the part is simplified and has more flat and parallel
surfaces.”

B

Design decision—decision made about the design to
meet either DFAM, NDE, or mass reduction design
requirement.

DFAM design
Decision

“I am going [to] fillet these sharp corners on this part right
here.”

C

NDE design decision “Yes, and then we can make the whole thing flat that way it
will be easier to test.”

D

Mass reduction design
decision

“We can cut out the bulk right here, should immediately
remove some mass.”

E

CAD action—observable actions taken in CAD
environment by experts individually (NDE or DFAM)
or collaboratively

NDE CAD action “we could also extrude this down and then chamfer”
(proceeds to extrude it down—performs the CAD action).

F

DFAM CAD action “I will cut that out with this circle”(proceeds to extrude it
down—performs the CAD action)

G

Collaborative CAD “Ah while you are extruding that, I am adding back the
chamfer next to the bolt holes.”

H

CAD action check
(mass, measure)

“Okay, let’s see where we are at now.” I

Fig. 5 CAD dominance from MUCAD_CLF generated percent
contribution graph
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500 ms [89] during which no participant was speaking.

S =
Ts
Ttotal

(3)

4.3.5 Computer-Aided Design Dominance. We defined “CAD
dominance” as a metric used to understand the asymmetry of con-
tributions to the CAD model during the collaboration. The multi-
user computer-aided design collaborative learning framework
(MUCAD_CLF) [93,115], was utilized to automatically calculate
and graph the CAD contribution percentage of each dyadic collab-
oration. This framework analyzes individual behaviors and team
collaboration in the MUCAD environment with fine-grained ana-
lytic data. The audit trails collected from ONSHAPE were downloaded
in CSV format for each dyadic team which contained records of all
analytic actions, recorded chronologically with corresponding time-
stamps, and then plugged into the MUCAD_CLF script. The script
automatically derived the contribution of different types of actions,
and the occurrences of each action corresponding to each partici-
pant. It further generated a graph, an example of which is shown
in Fig. 5, displayed the percentage of contribution by each partici-
pant per dyadic team. For the purposes of this study, we were inter-
ested in the asymmetry of contributions to the CAD model during
the collaboration, hence the delta of the percent contributions
were calculated. The CAD dominance (CdD) was calculated as
the difference between the percentage contributions of the first
expert (E1) and the second expert (E2) as shown in Eq. (4).

CdD =%E1 −%E2 (4)

4.3.6 Computer-Aided Design Efficiency. CAD efficiency was
conceptualized as a metric to evaluate the efficiency of the partici-
pants in the CAD environment. Specifically, this metric provides
insight into the dyad’s number of CAD actions and task completion
time. When time is held constant, higher efficiency corresponds to
fewer CAD actions, indicating that the dyad completes the CAD
task in fewer steps. Conversely, if the number of actions remains
constant, dedicating more time to the task results in higher CAD
efficiencies. As outlined in Eq. (5), CE is equal to the total time
taken to finish the design task (Tf) divided by the total number of
CAD actions taken (CAn). This equation was motivated by a
method developed by Mišić [116] which was used to measure

CAD efficiency and identify areas for improvement in CAD soft-
ware design, particularly in terms of user interface design [94].

CE =
Tf
CAn

(5)

4.3.7 Computer-Aided Design Model Complexity. Prior work
done by Camba et al. [95] and Hennig et al. [96] explored
methods to analyze and quantify CAD model complexity. Camba
et al. investigated feature complexity, specifically the number and
type of design elements such as extrusions, fillets, and chamfers,
and their interconnectedness using network graphs to analyze
CAD model complexity. Hennig et al. proposed frameworks for
benchmarking complexity measures using measures from network
graphs to detect systematic variation in complexity growth. From
Hennig et al.’s work, we adopted the Halstead-derived volume
measure complexity (HVM) to quantify CAD complexity in our
study. We defined CAD complexity as the degree of interdepen-
dence among the design elements of a CAD model. To calculate
CAD complexity, we utilized the HVM equation (Eq. (6)), which
takes into account the total number of features (N), node connectiv-
ity dependencies (E), unique number of interfaces (Eu), and unique
number of components (Nu) identified from the network graphs.

HVM = (N + E) ∗ Log(Nu − Eu) (6)

To generate these network graphs, we started from the “base” of
the feature tree, which represents the original CAD model imported
into ONSHAPE, and stacked up the features based on their dependent
sketches and features, as shown in Fig. 6 (left). Each item in the
feature tree is considered a “component” of the overall CAD
model. The dependencies between components are unidirectional,
meaning that changes made to one component will affect a depen-
dent component, but not vice versa. For example, in Fig. 6, changes
made to F1 (fillet 1) will not impact E3 (extrude 3), but changes to
E3 will affect F1. Following this, we calculated the HVM CAD
complexity. From Fig. 6 (right), we can see the total number of fea-
tures N (E1, F1, S1,…, etc.)= 12 and node connectivity dependen-
cies E (the lines connecting the features)= 16. To determine the
number of unique components (Nu), we counted each unique type
of CAD feature (e.g., sketch, extrude, fillet) present in the CAD
model, resulting in Nu (S, Sh, E, F)= 4. Similarly, we determined

Fig. 6 ONSHAPE feature tree (left) and the network graph formation (right)

031702-8 / Vol. 146, MARCH 2024 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/146/3/031702/7057825/m
d_146_3_031702.pdf by U

niversity O
f Toronto Library user on 31 M

arch 2024



the unique number of interfaces (Eu) by counting each unique
dependency between two types of CAD features; for example, an
extrude that depends on a sketch is considered as one unique inter-
face. From Fig. 6, we found Eu= 7. In summary, we analyzed each
CAD model produced by the dyadic teams by first generating
network graphs and then calculating the HVM CAD complexity.

5 Results
To address our research questions regarding how experts from

distinct backgrounds collaborate, we performed a Markov model
analysis and conducted a Pearson’s correlation to understand the
linkages between conversational dynamics and design dynamics.
By analyzing both verbal and CAD-based metrics, we were able
to gain a more comprehensive understanding of how experts from
different domains work together and how they coordinate their
actions.

5.1 How Do Experts Collaborate onMulti-Objective Design
Problem in a Collaborative Computer-Aided Design
Environment? To understand how experts collaborate in a collab-
orative CAD environment, a Markov model was generated to illus-
trate the actions taken by expert dyads during the design challenge
and to show the likelihood of transitioning from one action to the
next based on the previous action. Figure 7 presents the resulting
transition diagram, which displays the various collaborative
actions taken by the expert dyads. The arrows in the diagram indi-
cate the movement between different actions, including knowledge
sharing (DFAM or NDE), design decision (DFAM or NDE), and
CAD actions (DFAM, NDE, collaborative, or checking measures).
The thickness of the lines indicates the probability of a transition.
For greater clarity, only transitions with probabilities greater than
the median, 0.15, are indicated.
We can discern general trends in collaboration by analyzing Fig. 7.

Expert dyads were most likely to start their collaboration by discuss-
ing “DFAMknowledge” (A). This suggests that in the dyadic interac-
tions, theDFAMexpertsweremost likely to initiate the collaboration

and began sharing knowledge and principles relevant to the DFAM
design constraints. Analysis of the conversational dominance solely
as illustrated inFig. 8, indicated, on averageNDEexperts contributed
54%of the conversation,whileDFAMexperts contributed 46%.This
means that although DFAM experts played a significant role in initi-
ating the discussion, both experts made nearly equal contributions to
the overall conversation dynamics, i.e., neither group dominated the
conversational dynamics. This is further bolstered by Fig. 7, where
we see the dyadswere likely to alternate between “DFAMknowledge
share” (A) and “NDEknowledge” (B), suggesting that during the start
of thecollaboration, experts tended toexchangeknowledgefromtheir
areas of expertise. We hypothesize that experts were formulating a
common language or, from the perspective of C–K theory, were
working to determine the set of knownpropositions in the knowledge
space that would inform the creation of partially known propositions
in the concept Space.
Our analysis also revealed that the dyads were very likely to move

from “DFAM design decisions” (C), “NDE design decisions” (D),
“mass reduction design decision” (E), “collaborative CAD” (H),
and “CAD action check” (I) to “DFAM CAD actions” (G). These
findings suggest that regardless of which expert (i.e., NDE or AM)
made the design decision, DFAM experts were more likely to take
charge of the CAD environment, capitalizing on emergent infor-
mation about model performance from mass reduction design deci-
sions (E), collaborative CAD (H), and CAD action checks (I). This
suggests that DFAMexperts may dominate collaborative CAD envi-
ronments. When examining CAD dominance alone, as depicted in
Fig. 9, DFAM experts contributed 68% on average, while NDE
experts contributed 32%, thereby supporting our hypothesis.
Upon reviewing video data, we also note that NDE experts pre-

ferred to wait until the majority of the design objectives had been
achieved—namely that the DFAM principles had been met and
mass reduction design decisions had been made—before initiating
discussions about NDE techniques for inspecting the part. For
instance, after the CAD part was modified to meet DFAM principles
and mass reduction objectives, the NDE expert might suggest that
the part needs to have a minimum thickness of 6 mm to be inspected
using X-ray CT based on their experience or recommend increasing

Fig. 7 Markov model representation
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the number of parallel surfaces for optimal ultrasonic testing. This is
an interesting observational finding and warrants additional investi-
gation in future work, as it may indicate that NDE experts do not
feel a strong sense of ownership over the model.

5.2 What Is the Relationship Between the Conversational
Dynamics of Dyads and the Design Dynamics Produced
During the Dyadic Interaction? In pursuit of our second research
question, we investigate the relationship between conversational

Fig. 9 CAD dominance broken down by area of expertise

Fig. 8 Conversational dominance broken down by area of expertise
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dynamics and design dynamics, namely CAD efficiency, CAD
dominance, and CAD complexity. Specifically, a Pearson’s
product-moment correlation was conducted to examine the relation-
ship between conversational dominance, turn-taking, and silence
and the design dynamics. The variables exhibited a linear
relationship, and all variables were found to be normally distributed
as determined by the Shapiro–Wilk test (p>0.05). Additionally, box
and whisker plots were visually inspected, and no outliers were
found. Table 3 summarizes the Pearson correlation coefficients
between the variables.
There were no statistically significant relationships between con-

versational dominance and CAD dominance, r(13)= 0.174, p=
0.536; CAD efficiency, r(13)= 0.064, p= 0.821; or CAD complex-
ity, r(13)= 0.143, p= 0.609. Thus, our findings suggest that con-
versational dominance is not correlated with CAD dominance,
i.e., although an expert may dominate the conversation it does not
necessarily mean this same expert will be responsible for a majority
of the CAD actions in a collaborative CAD task.
Additionally, there were no statistically significant relationships

between turn-taking and CAD dominance, r(13)=−0.009, p=
0.974; CAD efficiency, r(13)=−0.356, p= 0.193; or CAD com-
plexity, r(13)= 0.307, p= 0.265. It is noteworthy that our findings
did not reveal significant levels of turn-taking, which typically leads
to equal opportunities for all team members to participate in conver-
sations to promote collaboration.
There were no statistically significant relationships between

silence and CAD dominance, r(13)= 0.174, p= 0.536; and CAD
complexity, r(13)= 0.074, p= 0.794. However, there was a statis-
tically significant, moderate positive correlation between silence
and CAD efficiency, r(13)= 0.064, p< 0.05. Based on prior
works [91,92], which have demonstrated that silence is necessary
for effective design decision-making in teams, we hypothesize
that the dyads used the periods of silence to reflect on their
design decisions and execute the CAD actions efficiently during
these periods.

6 Discussion
The overarching aim of this work was to understand the funda-

mental ways virtual teams of experts from disparate fields collabo-
rate on a multi-objective design problem in a collaborative CAD
environment. Additionally, this study draws focus on dyads, partic-
ularly in a controlled environment, serving as a foundational step to
understanding the broader complexities of “designing together” in
virtual settings. While the dynamics between dyads offer invaluable
insights, it is worth noting that real-world design teams often com-
prise more than two collaborators and are influenced by myriad
external variables.
With the growing prevalence of virtual teams and technology-

mediated interactions, communication, and coordination of collab-
orative actions between team members have become increasingly
complex [117,118]. Despite the prevalence of geographically dis-
tributed teams, strategies for effective team functioning in virtual
environments are not well understood [54]. Further, little work
has investigated the collaborative actions of expert designers in

virtual team environments [43,119], and no work has explored
how collaborative design platforms, such as collaborative CAD
environments may contribute to or detract from the effectiveness
of expert collaborations. This work sought to close these critical
research gaps by answering two key research questions: (1) how
do experts collaborate on a multi-objective design problem, and
(2) what is the relationship between the conversational dynamics
of dyads and the design dynamics produced during the dyadic
interaction?
Our study revealed that dyadic collaborations exhibit unique

communicative patterns, which are characterized by several ele-
ments that influence conversational dynamics and design dynam-
ics. Based on prior work, which has established the criticality of
knowledge sharing between experts to facilitate design decisions
[88], we developed a qualitative coding schema to analyze dyadic
interactions during a collaborative CAD task. Markov model anal-
ysis revealed emergent patterns in collaborations, suggesting that
during a multi-objective design challenge, one area of expertise
may dominate the knowledge exchanged and the decisions
made. Specifically, we observed that dyads were most likely to
begin the design challenge with the DFAM expert sharing relevant
knowledge. Further, from the Markov model we observe some
transitions between (C) and (D); each of these states refers to a
design decision, either DFAM (C) or NDE (D). This indicates
that as the dyads were working to converge on a design solution,
the experts were collaboratively transitioning between areas of
expertise to accommodate both the NDE and the DFAM con-
straints. Further, we also observe transitions between states (A)
DFAM knowledge share and (B) NDE knowledge share, indicat-
ing experts exchanged expertise. Interestingly, we see few con-
nections between knowledge-sharing states and action-oriented
states, suggesting the presence of some incubation period
between knowledge sharing and design actions. The collaborative
process was observed to be more likely dominated by design deci-
sions over NDE decisions after information exchange, consistent
with expert behavior documented in the literature. The signifi-
cance of domain expertise and heuristics in guiding decision-
making during collaboration highlights their impact on communi-
cative patterns and design outcomes. Additionally, the deferred
testing approach, akin to the traditional V-model [120], empha-
sizes the significance of considering expert-driven decisions at
later stages of the design process.
Evaluating our Markov model from the lens of C–K theory pro-

vides interesting insights. We conceptualize the K-space as both
states (A) and (B) explicitly referring to “knowledge share.” From
the Markov model, we observed that if experts entered either
state A or B they tended to remain there. In our study, we concep-
tualize the C-space as action-oriented design decisions, explicitly
referring to states (C) and (D). The Markov model suggests that
while dyads exchanged knowledge across areas of expertise (the
K-space), it did not necessarily result in transitioning to the
concept space (C-space). This is in contrast with C–K theory
which suggests that design teams rapidly alternate between the C
and K spaces, and emergent information in both spaces informs
the development of known or partially known propositions in
either the C or K space.

Table 3 Correlation between conversational dynamics and design dynamics

Conversational dominance Turn-taking Silence

r p-value r p-value r p-value

CAD dominance 0.174 0.536 −0.009 0.974 0.032 0.910
CAD efficiency 0.064 0.821 −0.356 0.193 0.593 0.020a

CAD complexity (HVM) 0.143 0.609 0.307 0.265 0.074 0.794

Note: r= Pearson correlation coefficient.
aCorrelation is significant at the 0.05 level (two-tailed).
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In pursuit of RQ2, what is the relationship between the conver-
sational dynamics of dyads and the design dynamics produced
during the dyadic interaction, we sought to understand the linkages
between conversational dynamics and design dynamics. Specifi-
cally, we explore the relationship between turn-taking, conversa-
tional dominance, and silence to CAD efficiency, CAD
dominance, and CAD complexity. Prior work has demonstrated
that conversational dominance within problem-solving teams can
have a negative impact on the team’s creative output [48,49].
However, little work has explored what if any links may exist
between conversational dynamics and design dynamics in more
complex design tasks, such as CAD modeling, in virtual teams.
In our work, we explore the linkages between conversational

dominance, silence, turn-taking, and design dynamics including
CAD dominance, CAD efficiency, and CAD complexity. We
found no linkages between conversational dominance and design
dynamics; this is particularly interesting from the lens of conversa-
tional and CAD dominance. Although an expert may dominate the
conversation it does not necessarily mean this same expert will be
responsible for many of the CAD actions in a collaborative CAD
task. This is contrary to studies that demonstrated team members
that dominated communication channels tended to contribute
more to project completion in high-tech teams [121–123].
Instead, this could suggest that conversational dominance and
CAD dominance may reflect a type of division of labor, with one
team member “driving” the CAD operation while the other “navi-
gates” the software, aligning with prior work by Phadnis et al.
[59] which demonstrates higher-quality work via division of labor
and tasks in virtual teams.
There was also no evident relationship between turn-taking and

design dynamics, meaning that more democratic turn-taking did
not necessarily result in successful design dynamics. This contrasts
a study by Haan et al. [90], which found that inclusive turn-taking,
involving equal opportunities for all team members to participate in
a conversation, can promote information sharing, engagement, and
creativity, ultimately leading to improved team performance [90].
We also found a statistically significant positive relationship
between silence and CAD efficiency. We hypothesize that dyads
used the silence to reflect on their design decisions and execute
the CAD actions more intentionally. This aligns with prior
research that found that periods of silence allowed group
members to process and integrate their individual ideas and perspec-
tives, leading to a more efficient and effective group brainstorming
session [91,92].

7 Limitations and Future Work
This study was circumscribed by several key factors. First, our

study uses a limited sample size as recruiting participants with
niche expertise in DFAM and NDE proved to be challenging. We
overcame this by using snowball and purposeful sampling
methods, and while most of our participants were quasi-experts,
future studies could benefit from recruiting more field experts to
solidify our current findings. Moreover, although all participants
had previous CAD experience, not all were familiar with ONSHAPE.
The training exercise aimed to acquaint them with the unique
CAD environment, yet some may have needed additional
in-depth training to improve their proficiency. Despite the infeasi-
bility of recruiting a sufficient sample size with expertise in both
DFAM/NDE and ONSHAPE, it’s worth noting that participants’
skills in ONSHAPE may have affected results. Specifically, if partici-
pants felt they lacked sufficient skills, they may have been less
likely to participate in the CAD software itself, leading to a disparity
in CAD dominance. Future studies should assess participants’ per-
ceptions of their CAD abilities post-task to better understand this
potential confounding variable.
Further, our study specifically focuses on dyadic interactions

within the realm of virtual design collaboration. While this
emphasis offers valuable insights into the dynamics of two-

person interactions, it is essential to recognize that the scope of
design collaboration often extends beyond dyads. In practice,
design collaborations frequently involve larger and more
diverse teams, each bringing its unique dynamics, challenges,
and collaborative synergies. By narrowing our lens to dyads,
we potentially miss out on the multifaceted complexities and
nuances inherent in broader team interactions. Consequently,
the generalizability of our findings is primarily confined to
dyadic settings. To obtain a more holistic and representative
understanding of virtual design collaborations, future research
should indeed delve deeper into larger team dynamics, examining
the intricate interplay of individual roles, communication pat-
terns, and collaborative outcomes. Such investigations will be
paramount in bridging the existing knowledge gap and fostering
efficient and innovative virtual design collaborations across
diverse team configurations.
Another notable limitation of our study is the potential influence

of participant compensation. All participants were informed prior to
the study that they would be compensated regardless of their perfor-
mance during the study. This guaranteed compensation likely con-
tributed to a significant variance in participant motivation, as
compared to more authentic in-situ designers and design teams,
who are more authentically motivated to design optimal solutions
to meet customer and/or stakeholder needs. While our setup
aimed to foster participation, it might not have elicited the same
level of dedication and effort as real-world scenarios where tangible
consequences or rewards are present.

8 Conclusion
Multi-objective design problems require the collaboration of

experts from distinct backgrounds. Collaboration across teams
and dyads can be challenging, but effective communication,
decision-making tools, and organizational support can facilitate
the integration of diverse knowledge and perspectives. This study
aimed to understand how expert dyads from disparate fields collab-
orate virtually on a multi-objective design problem in a collabora-
tive CAD environment. By exploring the communicative
intricacies within dyads this study offers a foundational perspective
on understanding the wider spectrum of virtual design collabora-
tion. The study addressed critical research gaps by investigating
the communicative patterns and the relationship between the con-
versational dynamics of dyads and the design dynamics produced
during the dyadic interaction. The findings revealed unique commu-
nicative patterns characterized by several elements that influence
conversational dynamics and design dynamics. Markov model anal-
ysis identified emergent patterns in collaborations, suggesting that
experts may not rapidly transition between concept and knowledge
spaces, but instead allow knowledge to incubate as each
expert learns the jargon and disciplinary norms from their counter-
part. In addition, the study found few linkages between conversa-
tional dynamics and design dynamics. Overall, the study
contributes to the understanding of effective team functioning in
virtual environments, providing insights into the communicative
patterns and design dynamics of expert designers in virtual team
environments.
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Appendix: Markov Model—Transition Matrix
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